Loose Hamilton Cycles in Random k-Uniform Hypergraphs
نویسندگان
چکیده
In the random k-uniform hypergraph Hn,p;k of order n each possible k-tuple appears independently with probability p. A loose Hamilton cycle is a cycle of order n in which every pair of adjacent edges intersects in a single vertex. We prove that if pn/ logn tends to infinity with n then lim n→∞ 2(k−1)|n Pr(Hn,p;k contains a loose Hamilton cycle) = 1.
منابع مشابه
Hamilton cycles in quasirandom hypergraphs
We show that, for a natural notion of quasirandomness in k-uniform hypergraphs, any quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk−1) contains a loose Hamilton cycle. We also give a construction to show that a k-uniform hypergraph satisfying these conditions need not contain a Hamilton `-cycle if k − ` divides k. The remaining values of ...
متن کاملLoose Hamilton Cycles in Random Uniform Hypergraphs
In the random k-uniform hypergraph Hn,p;k of order n each possible k-tuple appears independently with probability p. A loose Hamilton cycle is a cycle of order n in which every pair of adjacent edges intersects in a single vertex. We prove that if pnk−1/ log n tends to infinity with n then lim n→∞ 2(k−1)|n Pr(Hn,p;k contains a loose Hamilton cycle) = 1. This is asymptotically best possible.
متن کاملLoose Hamilton Cycles in Random 3-Uniform Hypergraphs
In the random hypergraph H = Hn,p;3 each possible triple appears independently with probability p. A loose Hamilton cycle can be described as a sequence of edges {xi, yi, xi+1} for i = 1, 2, . . . , n/2 where x1, x2, . . . , xn/2, y1, y2, . . . , yn/2 are all distinct. We prove that there exists an absolute constant K > 0 such that if p > K logn n then lim n→∞ 4|n Pr(Hn,p;3 contains a loose Ham...
متن کاملMinimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs
We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which consecutive edges intersect in a single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥ ( 7 16 + o(1) ) ( n 2 ) contains a loose Hamilton cycle. This bound is asy...
متن کاملPerfect Matchings, Tilings and Hamilton Cycles in Hypergraphs
This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....
متن کامل